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The dynamics of towed flexible cylinders 
Part 1. Neutrally buoyant elements 

By A. P. DOWLING 
Department of Engineering, University of Cambridge, Trumpington Street, 
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(Received 20 March 1987) 

The transverse vibrations of a thin, flexible cylinder under nominally constant 
towing conditions are investigated. The cylinder is neutrally buoyant, of radius uA 
with a free end and very small bending stiffness. As the cylinder is towed with 
velocity U ,  the tangential drag causes the tension in the cylinder to increase from zero 
a t  its free end to a maximum a t  the towing point. Transverse vibrations of the 
cylinder are opposed by a normal viscous drag force. Both the normal and tangential 
viscous forces can be described conveniently in terms of drag coefficients C,  and 
C,. The ratio C,/C, has a crucial effcct on the motion of the cylinder. The form of 
thc transverse displacement is found to be greatly influenced by the existence of a 
critical point a t  which the effect of tension in the cylinder is cancelled by a fluid 
loading term. Matched asymptotic expansions are used to extend the solution across 
this critical point to apply the downstream boundary condition. Displacements well 
upstream of the critical point have a simple form, while nearer to the critical point 
the solution depends on whether the normal drag coefficient C,  is greater or less than 
one-half C,. 

The typical acoustic streamer geometry considered is found to be stable to 
transverse displacements a t  all towing speeds. Forced perturbations of frequency w 
are investigated. At low frequencies they propagate effectively along the cylinder 
with speed U .  At higher frequencies they are attenuated. 

The effect of a rope drogue of length I,, radius aR, is investigated. Provided 
ol,a,/Ua, is very small, the drogue has the same effect as a small increase in the 
length of the cylinder. However a t  higher frequencies and for small values of the ratio 
C,/C, attaching a drogue may be disadvantageous because it reduces the 
attenuation of high-frequency disturbances as they propagate down the cylinder. 

1. Introduction 
Towed instrumentation packages in the form of long flexible cylinders are used 

extensively to detect and analyse acoustic signals in the ocean. A typical geometry 
is illustrated in figure 1 .  It consists of a heavier-than-water cable attached a t  one end 
to a ship and a t  the other to a neutrally buoyant slender cylinder containing a sonar 
array. This cylinder is sometimes referred to  as an acoustic ‘ streamer ’ or ‘ array ’. 
There may possibly be a rope at  the downstream end of the cylinder acting as a 
drogue. If such an arrangement is to give good resolution of the acoustic signals it 
detects, the instantaneous shape of the acoustic streamer must be known. When the 
ship maintains a constant velocity, the cylinder is straight and horizontal. However, 
changes in the ship’s path will make i t  deform. In  these two papers we analyse linear 
departures from the ideal case due, for example, to changes in ship speed or heading. 
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Heavier-than-water cable 

Rope drogue 3 
Neutrally' buoyant 
cylinder containing 
sonar array 

FIGURE 1 .  Typical geometry for a ship towing an array 

The aim of this work is to provide a simple means by which the shape of the towed 
system can be predicted either from the ship's path or from an accelerometer a t  the 
leading edge of the cylinder. Part 1 deals with the displacements of the neutrally 
buoyant elements, while Part  2 investigates the propagation of disturbances along 
the negatively buoyant cable. The results of Part 1 provide the downstream 
boundary conditions for the cable in Part 2. 

Computer programs have been developed to calculate the three-dimensional path 
of a towed system as a ship manoeuvres (see for example Ivers & Mudie 1973, 1975; 
Huston & Kamman 1981 ; Sanders 1982; Ablow & Schechter 1983). In general these 
packages require considerable computing resources and, if they are to run in real 
time, certain simplifying assumptions must be made. Since we are investigating 
small departures from constant velocity, we adopt a different approach, and linearize 
the transverse equations of motion. Pa'idoussis (1966, 1968) derived a linearized form 
of the transverse momentum equation for neutrally buoyant flexible cylinders with 
an axial flow. A term has been omitted from these early versions and Pa'idoussis 
(1973) gives the correct form of the equation of motion. Disturbances of frequency 
o satisfy a linear fourth-order differential equation. The coefficient of the fourth 
derivative depends on the bending stiffness of the cylinder. Perturbations of 
cylinders whose response depends on their bending stiffness have been extensively 
studied in the literature (see for example Hawthorne 1961 ; Pa'idoussis 1966, 1968, 
1973 ; Lee 1978 ; Prokhorovich, Prokhorovich & Smirnov 1982). 

However, acoustic streamers are very long in comparison with their radius a*, and, 
for motions with wavelengths comparable with the cylinder length, the restoring 
force due to bending stiffness is exceedingly small. It is therefore appropriate to 
recognize this and neglect the effect of the bending stiffness over most of the cylinder. 
This approximation has been made by Ortloff & Ives (1969), Kennedy (1980), 
Kennedy & Strahan (1981) and Lee & Kennedy (1985). The differential equation 
then reduces to second order, the coeficient of the highest derivative being 
T ( x )  -ponai  U 2 ,  where T ( x )  is the tension in the cylinder and varies along its length. 
U is the mean flow velocity and pa the density of the surrounding fluid; pa nai U 2  
arises due to the effect of fluid loading. 

In $ 2 4  we consider a thin, neutrally buoyant, flexible cylinder with its 
downstream end unrestrained. T ( x )  then vanishes a t  this free end, and increases 
along the cylinder due to tangential drag. It is well known that the transverse 
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displacements of a tensioned string in vacuo satisfy a hyperbolic differential 
equation. When fluid loading is included, the equation remains hyperbolic over most 
of its length, but is elliptic near the free end, having a regular singular point a t  x,, 
a critical position a t  which T(x , )  = po 7cai U 2 .  Ortloff & Ives and Kennedy & Strahan 
base their work on Pa’idoussis’ early erroneous equation of motion, and find one of 
the solutions of their linear, second-order equation to be unbounded a t  x,. They 
therefore reject this solution and the downstream boundary condition and describe 
the response of the cylinder in terms of the other (finite) solution. However, when the 
correct form of Pa’idoussis’ equation is used, and for reasonable values of the drag 
coefficients, both solutions are finite at  the critical position, although one solution 
has a branch point there. Hence, before the downstream boundary condition can be 
applied, further investigation is needed to see how this solution behaves as x crosses 
x,. In the region of x, the response is controlled by the bending stiffness of the 
cylinder. We therefore use the fourth-order equation in the region of x,, and the 
method of matched asymptotic expansions to join these ‘inner’ bending solutions to 
the ‘outer’ tension-dominated response. In this way, the general solution for the 
vibration of a fluid-loaded cylinder, in the limit of small bending stiffness, can be 
found. Application of the free-end boundary condition then leads to an analytical 
expression for transverse displacements of the towed cylinder at frequency w .  The 
displacements are found to have a simple form well upstream of x,. Nearer to x, the 
expression is more complicated and depends on whether the normal drag coefficient 
C, is greater or less than half the tangential drag coefficient C,. 

In 93 we investigate the stability of a neutrally buoyant towed cylinder by seeing 
whether there are any free modes that grow in time. A practical streamer geometry 
is found to be stable a t  all towing speeds. 

Since the towed cylinder is stable, it is appropriate to determine its response to 
forcing at  its upstream end. A t  low frequencies for which wl,/U is small the 
disturbances propagate along the cylinder, virtually unchanged in amplitude and 
with a phase speed U ,  while for higher frequencies the disturbances decay in 
amplitude along the streamer. The first form of motion is often described as ‘worm- 
in-a-hole’ because all points of the cylinder take the same track. This motion is 
compatible with observations of low-frequency oscillations of towed arrays. 

So far we have assumed the end of the cylinder to be free. However in many 
practical situations it is attached to a rope drogue. In 95 we investigate the effect of 
a rope drogue. We use the work in the earlier sections to describe the transverse 
motions of the rope which has a free end, and apply continuity of displacement and 
force a t  the junction of the drogue and cylinder. Ifwl,a,/Ua, is very small, the main 
effect of the drogue is found to be the same as an increase in length of the cylinder 
by an amount lRaR/aA,  where a ,  and I ,  are the radius and length of the rope drogue 
respectively. At higher frequencies a drogue can have an adverse effect if the ratio 
C,/C, is small. Then attaching a drogue reduces the attenuation of high-frequency 
transverse disturbances as they propagate down the cylinder. 

2. The transverse motion of a neutrally buoyant flexible cylinder 
Consider an acoustic streamer consisting of a long flexible cylinder of length I,, 

radius a,, towed in the negative x-direction a t  a constant speed U .  If the cylinder is 
neutrally buoyant its mean position is horizontal. We will investigate linear 
departures from this arrangement and choose a frame of reference in which the 
distant fluid has a velocity (U,O,O) ,  with the origin a t  the mean position of the 
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FIGURE 2. Linear perturbations of the towed cylinder, viewed in a frame of reference in which 
the distant fluid has velocity (a, 0 , O ) .  

FIGURE 3. Forces acting on a small length, Sx, of the neutrally buoyant cylinder. 

upstream end of the cylinder as shown in figure 2. It follows from the neutral 
buoyancy of the cylinder, and the linearity of the disturbances, that perturbations 
in the (y = 0)- and ( z  = 0)-planes satisfy identical uncoupled equations. It is 
thzrefore sufficient just to investigate the motion in one plane, (2 = 0) say. 

The equation of motion of the cylinder may be derived by considering the balance 
of forces on a small length as shown in figure 3.  Let T(x) be the variable tension in 
the cylinder, FN and FT the viscous forces acting on the cylinder per unit length in 
the local normal and tangential directions respectively, and FA the inviscid force due 
to the acceleration of the virtual mass of the cylinder. Resolving in the x-direction 
gives, to zeroth order in the perturbations, 

aT 
FT+- = 0. ax 

The transverse momentum balance gives, to first order in the disturbances, 

ay a4y 
-FA-FN+FT--B-- ,  ax ax4 

where m is the mass of the cylinder per unit length and B is its bending stiffness. This 
is Pa'idoussis' equation. The term FT aylax was omitted in Pa'idoussis' early work (see 
for example Pai'doussis 1966, 1968). This error was later corrected (Pai'doussis 1973 
and Pa'idoussis & Yu 1976) but unfortunately the earlier erroneous form has been 
adopted in much of the towed-array literature (Ortloff & Ives 1969; Kennedy 1980; 
Kennedy & Strahan 1981). As Pai'doussis (1973) points out, omitting the term 
FT aylax is equivalent to taking the tangential viscous force to act in the x-direction 
rather than in the instantaneous tangential direction. 

FA is the force required to accelerate the neighbouring fluid as the cylinder 
deforms. Provided the flow does not separate, the expression derived by Lighthill 

where po is the fluid density. 
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The viscous forces acting on a long, thin flexible cylinder are discussed by Taylor 
(1952). He proposes the form 

FN = $po V 2  {2aA C, sin2 i + 2naA CN sin i}, 

F, = po V 2  na, C, cos i, 

( 2 . 4 ~ )  

(2.46) 

where V is the magnitude of the relative velocity between the cylinder and the 
distant flow, and i is the angle between this relative velocity and the local tangent. 
For linear perturbations of a neutrally buoyant element, V is equal to U and i is 
small, 

sini x i x l3+%, cosi x I .  
ri at ax 

These expressions therefore reduce to 

( 2 . 5 ~ )  

FT = po nu* u2 c,. (2.56) 

With this form for the tangential drag the longitudinal momentum equation (2.1) 
may be integrated immediately to give 

T ( x )  = T(1,) +ponaA U 2  CT(ZA-x), (2.6) 

T ( l A )  is the tension a t  the downstream end of the array, and vanishes if the end is 
free. Then T(O), the tension at  the upstream end, is directly proportional to the drag 
coefficient C,. Hence G, may be inferred from measurements of T(0) .  Data from 
large-scale experiments suggest C, = 0.0025 (Andrew private communication 1984). 
Ni & Hansen (1978) obtained similar values of C, for a range of Reynolds numbers 
in their rig experiments. There is less evidence about the appropriate value of 
G,. Taylor discusses in some detail how the value of C, would vary in the range 
0 < C, < C, depending on the type of roughness on the cylinder. We will therefore 
investigate the effect of varying C, within this range. 

When the expressions for FA and FN in (2.3) and (2.5) are substituted into the 
transverse momentum equation (2.2) they lead to 

a2y (Z axat a2y at2 a x 2  

porn- a2y = (T(x) -pona~U2)- -pona~ -+2U- 

The coefficient of the second derivative of y vanishes a t  a position x,, where T(x,) is 
equal to the fluid-loading term po nu; U 2 .  Using (2.6) to rewrite T(x) shows that 

T(x)-p0naiU2 = p o ~ ~ A U 2 C T ( ~ c - ~ ) ,  (2.8) 

where T ( z A )  -5 x, = 1,+ 
PO naA u2CT cT ‘ 

x, lies on the cylinder if 
1, 2 xc 2 0, 

i.e. if (2.10) 



512 A .  P. Dowling 

Since we are considering linear disturbances we may investigate each Fourier 
component separately. For modes with time dependence eiwt, equation (2.7) reduces 
to 

This may be cast into non-dimensional form by scaling lengths on L (typically 
of order I*). When a new variable X = x / L  is introduced, and with y(x , t )  = 
Re (Y(X) eiWt ), the transverse momentum equation becomes 

d4 Y d2Y dY 
e 3 ~ - ( X c - X ) ~ + b - + i 1 2 b Y  dx = 0, (2.12) 

e = (B/L3po ~a~ U2C,)%, is a small parameter because bending forces in the cylinder 
are very much less than the tension forces. 

(2.13) 

Q is the non-dimensional frequency, wL/U, and X ,  is the non-dimensional critical 
position, x,/L. 

Away from regions with intense gradients the contribution from the fourth-order 
derivative in (2.12) is negligible because e is small, and the equation reduces to 

d2Y dY 
d x 2  dx 

(X,-X)--b--iiabY = 0, (2.14) 

a second-order ordinary differential equation with a regular singular point at 
X = X,. This only differs from the equation investigated by Ortloff & Ives (1969) 
and Kennedy & Strahan (1981) (derived from Pa'idoussis' erroneous version) in that in 
their equation the coefficient of the first derivative is, in this notation, - 1 - b rather 
than -b. We will see later that this apparently small difference has considerable 
consequences. 

The occurrence of a singularity a t  X ,  is not an artefact of the linearization. Ablow 
& Schechter (1983) investigate finite-difference solutions of general cylinder motion. 
They find that the matrix to be inverted is singular a t  the end of the cylinder where 
the tension vanishes. Since they have omitted a virtual mass term, which is the 
generalization of our linearized expression pa nai U 2  a2y/i3x2 to arbitrary motion, 
their singularity is entirely equivalent to our singularity at X,. Ablow & Scheehter 
get around this difficulty in an ad hoc way by applying the downstream boundary 
condition at' a point P, a short distance from the free end, and assuming the cylinder 
to be straight between P and the free end. However for the linear disturbances 
considered here the effect of the singularity on the form of the solution can be 
investigated analytically. 

Two solutions of (2.14) may be obtained by the standard method (Ince 1956) of 
trying a series solution of the form 

0 

Y(X) = (X,-X)" c an(Xc-X)n .  
n=O 
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The indicia1 equation shows CT to be equal either to 0 or to  1 - b. The general solution 
of (2.14) is then found to be 

(2.15) 
O0 (iQb(X, -X))% O0 (iQb(X, -X))% 

Y(X) = P x + Q ( X ,  -X)’-b z 
n ! ( n + b - l ) !  n-O n ! ( n + l - b ) !  ’ 

P and Q are arbitrary constants. Y ( X )  is a linear combination of two independent 
series solutions. The first solution is analytic while the second has a branch point a t  
X,. Both series converge for all X. Equation (2.13) shows that 

and so for 0 < C, < C, both solutions are finite a t  the critical position X,. 
In a typical problem, boundary conditions for the transverse motion are given at  

the two ends of the cylinder X = 0 and X = lA/L.  If the inequalities expressed in 
(2.10) are satisfied these two points are on either side of the critical position X,. Let 
us now for definiteness consider a cylinder with a free downstream end at  which 
T(1,) vanishes. Then the first inequality in (2.10) is automatically satisfied. Practical 
acoustic streamers are sufficiently long to ensure that C, 1, > aA, hence also meeting 
the second inequality. The critical point X, therefore lies somewhere between the two 
ends where the boundary conditions are specified. Before these boundary conditions 
can be applied, we need to determine how the solution expressed in (2.15) varies as 
X passes through X,.  There is no difficulty with the first series solution because it is 
continuous a t  X,, but the second has a branch point there and the relevant cut must 
be found. Since the second series solution has large gradients in the vicinity of X,, 
bending forces become important and the full fourth-order equation (2.12) is needed 
to determine the form of the deflections. The method of matched asymptotic 
expansions may be used to match these ‘inner’ bending solutions to the ‘outer’ 
tension-dominated disturbances described in (2.15). 

It is worth noting that Ortloff & Ives (1969) and Kennedy & Strahan (1981) did 
not have these difficulties. The second independent solution to their equation is 
infinite a t  the critical point. They therefore reject it  and the downstream boundary 
condition, and use the other bounded solution to describe motion in X < X,. But we 
have seen that when the correct form of Pai’doussis’ equation is used, both 
independent solutions are finite at X, for reasonable values of the normal drag 
coefficient. The behaviour of the solutions as X varies across X ,  must therefore be 
investigated in detail so that the downstream boundary condition may be applied. 

The solutions of (2.12) are to be determined for small values of E and 0 < Re (b ) .  
Let us shift the origin by introducing a new variable r = X,-X. Then with 
Y(X) = $(r ,e) ,  $ satisfies 

d4$ d2$ d$ . 
dr4 dr2 dr 

E3--r--b-++Qb# = 0. (2.16) 

For small e, it is appropriate to seek a series solution in powers of the small parameter 
e3 which appears in (2.16) ; 

$(r ,  e) = $,(r)  + e3&(r) + . . . . 
The equation for #o(r)  is 

r T + b A - i Q b # o  d2$, d$ = 0. 
dr, dr 

(2.17) 
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The general solution of this second-order equation ha,s been given in (2.15) and is 

(iS2br)n 
C 

a; (iObr)" 
#o(r) = P c 

n=O n ! ( n + b - l ) !  n!(n+1-6) !  
(2.18) 

Gradients of #o(r)  become large near r = 0. Away from this region $o(r)  dcscribes 
deflections of the towed cylinder in which the response is determined by its mass, 
tension and fluid loading. 

In  the region of r = 0, the surface response is controlled by bending stiffness, and 
# ( r ,  E )  varies rapidly. For this region then let us strctch the spatial coordinate and 
introduce R = r/t:  with #(r ,  e )  = @(R, E ) .  An inner expansion for the displacements 
can be obtained by expanding @ in ascending powers of E 

@(R, E )  = @,(R) + e@,(R) + . . , 
O0 satisfies 

(2.19) 

The four independent solutions of this linear fourth-order equation are determined 
in integral form in the Appendix where, in particular, their asymptotic forms for 
large IRI are evaluated. It is found that for large positive R 

A ,  B, C and D are arbitrary constants multiplying the four independent solutions 
and are to be determined by matching to the outer solution. When this inner solution 
is rewritten in terms of the outer variable r it becomes 

Hence for r p E we have 

(2.23) 
O0 (iQ6r)n (iQbr)" + (Q, + &3 ) y l - b  c 

n=o n ! (n+ 1 - 6) ! #o(r) = p c 
12=o n!  (n+b-  i)!  

with Q2 = -Betixb (1  -b) ! (6 -2 )  ! cbP1 and Q3 = -Ce-iixb (1  -6) ! (6 -2 )  ! &'. 

evaluated in the Appendix (see equation (A 26)) shows that 
VC'hen r / e  is large and negative with 1 9 Irl 9 E ,  the asymptotic form for O,,(R) 

- r)ib-?! 8-Eb ac.4 2 

( Q2 e-is + Q3 eis ), (2.24) 
( 1 - b ) !  (6-2)!  

+ 
for - E +  r 9 - 1 ,  with B = n ( & ~ ) + $ ( - r / e ) ~ .  

The first term on the right-hand side of (2.24) is just the series solution, describing 
the balance between tension and inertial forces, that  is valid everywhere. The second 
and third terms describe motions downstream of the critical position with large 
gradients whose form is influenced by the bending stiffness of the cylinder. 
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Returning to the spatial variable X 

O0 (iQb(X, -X))n 
%=,, n!  ( n + b - l ) !  

Y(X) = P c 

and 

(X -x, ei-3 + nu (Q2e-is+Q3eio) for 1 $- X-X, + e, (2 .253)  
(1 - b )  ! (b  - 2) ! 

with 

To summarize then, perturbations of the cylinder upstream of the critical point are 
described by two linearly independent series solutions. The displacement typically 
varies over a non-dimensional lengthscale of order unity and the bending stiffness of 
the cylinder, characterized by the small non-dimensional parameter E ,  is unimportant 
in this range. The first series solution is always slowly varying and so is valid for all 
X .  The second has a branch cut a t  the critical position, X,,  and large gradients near 
it. This second solution is extended across X = X, in the Appendix by using the full 
equation of cylinder motion including bending stiffness and is displayed in (2.25 6). 
Not only is the appropriate branch cut determined by equation ( 2 . 2 5 b ) ,  but it also 
shows the solution downstream of X, to contain wavelike disturbances with 
wavelengths of the order of e. Bending stiffness therefore has an important influence 
on the cylinder motion throughout this region. If either Q2 or Q3 is non-zero, the 
displacements of the cylinder vary over a long lengthscale well upstream of X , ,  but 
have very small wavelengths throughout the tail region downstream of X,. The 
coefficients P, Q2 and Q3 may be determined from the boundary conditions a t  the two 
ends of the array, X = 0 and X = LA = 1JL. 

The two boundary conditions appropriate for a free end of a flexible cylinder have 
been derived by Hawthorne (1961). One condition is that there be no bending 

- = 0  a t X = L , .  (2.26) 
d2 Y 

moment ; 

d x 2  

The second condition arises from the transverse momentum balance for the tapered 
portion of the cylinder a t  its end. If this portion is very short its momentum is 
negligible, and the forces acting on it must cancel. The only significant forces on a 
short end a t  which the tension vanishes are due to  bending resistance and the virtual 
mass of the fluid near the end. This has been evaluated by Hawthorne (1961) and 
PaTdoussis (1966) and takes the form 

0 = .($-a 4)  + $( (X -x,)/E)t 

(2 .27)  

where f is a non-dimensional parameter less than unity introduced to account for 
departures of the flow from two-dimensionality. In  view of the uncertainty in the 
value off, it is reassuring that our results will be found not to depend on the details 
of this boundary condition. For motions with time dependence eiwt (2.27) becomes 

(2 .28)  
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We now substitute for Y(X) from equation (2 .25b)  into the two boundary conditions 
(2.26) and (2.28). In  the limit of small bending stiffness, this gives 

2i( 1 z;E&+f&fb f lQ2E2 eieE 
(2.29) 

(b- 2) ! ( 1  -b) ! ( b + l ) !  ' ) -  (eiOE-inb - e-illE+ixb 

and Q 3 = - Q  2 e-i28~ 1 (2.30) 

E is the distance between the critical point and the free end. It is apparent from (2.9) 

E = L,-X, = a,/LC,. (2.31) 
that 

In deriving (2.29) the product SZE has been assumed to be small in comparison with 
unity. Acoustic streamers are sufficiently long in comparison with their radius for 
this to be a good approximation a t  the low frequencies of interest here. 8, is defined 

by 8, = ~ ( i b  - 2) + g ( E / ~ ) f .  (2.32) 

The solution of (2.29) and (2.30) has quite a different form according to whether 
Re@) is greater or less than one-half. For Re(b) greater than a half these two 
boundary conditions reduce to the very simple statement that 

Qz w Q3 - p&!. (2.33) 

In  the limit of small bending stiffness, E tends to zero and Q2 and Q3 are negligible in 
comparison with P. Then the motion upstream of the critical position is given by 

Y(X) = P z: (iQb(Xc for E < X, - X, Re (b)  > $. (2.34) 
%-,, n ! ( n + b - l ) !  

When Re@) is less than one-half, (2.29) and (2.30) become 

(2.35) 

and the cylinder displacement is described by 

(iSZb(X, -X))n sin 8, b( -b)  ! 
n-,, n ! (n + b - 1) ! + sin (8, - r b )  (b  + 1 )  ! 

Q2El+b (X, -X)l-b 

, (2.36) 
(iQb(X, -X))'] x c  

n-O n ! ( n + l - b ) !  

for G 4 X,-X and Re(b) < t. 
We have determined a general expression for the propagation of deflections of 

frequency w along a towed cylinder with a free end in the limit of small bending 
st'iffness. The method of solution involves extending the upstream expression for 
transverse displacements across a critical point, a t  which the restoring force due to 
tension is cancelled by a fluid-loading effect, so that the downstream boundary 
condition may be applied. The general solution upstream of the critical point is given 
in (2.34) and (2.36), and is seen to have a different form according to whether Re(b) 
is greater or less than one-half. These can be combined into a statement that 

sin 8, 
sin (8, - zb) 

+H(0.5-Re(b)) 
n-,, n ! ( n + b - l ) !  

, (2.37) 
(iSZb(X, -"))I 

SZ2E1+b (X, - X ) l - b  C b(-b)!  
X- 

(b+ l ) !  n=,, n ! ( n + l - b ) !  



Dynamics of towed JEexible cylinders. Part 1 517 

for tz < X, -X  and SZE small. An inspection of this expression shows that, when 
lengths are non-dimensionalized on the cylinder length l,, the displacement at 
position X = x/1, depends on the non-dimensional frequency 52 = ol,/U, the ratio 
C,/C, and the value of the parameter aA/lACT. I n  a particular example the constant 
P will be determined by the upstream boundary. 

Well upstream of the critical position this form for Y ( X )  simplifies to 

a, (iSZb(X, - X ) ) n  
n=O n!(n+b-I ) !  * 

Y(X) = P c (2.38) 

For Re (b)  greater than a half, this solution is valid throughout the region X ,  - X  % E .  

But when Re (6) is less than one-half, it only holds in X,-X % E. Then, once X,-X 
is comparable in magnitude to E ,  the distance from the critical point to the free end, 
the second series in (2.37) is important and leads to large gradients of the 
displacement Y ( X ) .  For real frequencies, Re (b)  is equal to C,/C,. Hence, whenever 
the normal drag coefficient is less than half the tangential drag coefficient, the 
displacement of the cylinder has large gradients upstream of the critical position. It 
is interesting to note that (2.38) describes the motion that would be obtained by 
applying a boundary condition i 0 Y  +dY/dX = 0 a t  the critical point, i.e. a 
condition that the cylinder has no normal velocity there. The displacement 
downstream of the critical position X ,  has a more complicated form, and the full 
expression defined by (2.25b) and the boundary conditions (2.29) and (2.30) must be 
used. The slope of the cylinder is large, but there is little practical interest in the 
solution in this region. 

Ortloff & Ives (1969) expressed their solution to a similar equation in terms of 
Bessel functions of complex argument and order. Y ( X )  can be rewritten in a similar 
form. The series expansion for Jb-l shows that 

= ( ~ a ( X c - x ) ~ ) l - b J b - l  (a(X, - X ) $ .  
(iQb(X,-X))" 

r, 
npo n ! ( n + b - I ) !  

(2.39) 

where a = (-4iSZb)i, the sign of the square root being chosen so that Re(a)  is 
positive. Hence, (2.38) is equivalent to 

Y ( X )  = P(;a(X,-X)i)l-bJ,-, ( a ( X , - X ) i ) ,  (2.40) 

for 0.5 < Re (b) and X,-X 9 6 or for 0 < Re (b) < 0.5 and X, - X  9 E. This form for 
Y ( X )  will be found to be convenient when investigating high-frequency disturbances. 

3. The stability of a towed flexible cylinder 
The general solution for the deflections of a towed cylinder derived in $ 2  may be 

used to investigate its stability by seeing whether free modes for a fixed upstream end 
grow or decay in time. 

It follows from (2.38) that  a condition of no transverse displacement a t  X = 0 is 
equivalent to 

= 0. 
(i52bX,)n c ,=,n!(n+b-l)!  

The complex non-dimensional eigenfrequencies 52 may be determined from this 
equation. If one of the roots has negative imaginary 52, a free mode grows in time and 
the system is unstable. If, however, all the roots of (3.1) have positive imaginary 52 
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the system is stable. It is interesting to note that (3.1) shows that the non- 
dimensional eigenfrequencies 52 are determined only by the values of the parameters 
C,/C, and a,/l,C, and are independent of the free-stream velocity U .  It therefore 
implies that if the towed cylinder is unstable a t  any flow speed, it is unstable for all 
speeds ! 

We introduce a function f (52)  defined by 

OcI (iQbXJn 
f (52) = ( b - l ) !  2 

nso n!  (n+b-  l ) ! '  (3.2) 

f ( i2 )  is analytic in the lower half Q-plane and its number of zeros, N ,  within a closed 
contour r in this region is given by Cauchy's theorem as 

(3.3) 

The derivative f ' ( Q )  may be evaluated by differentiating (3.2) term by term. The 
integral (3.3) was evaluated for C,/C, = 0.25 and 0.75, a,/l,C, = 0.033 and a 
contour r consisting of the real 52-axis from 52 = 30 to - 30 closed by a semicircle in 
the lower half 52-plane. In both cases N was found to be zero, showing that f(s2) has 
no zeros in Im(52) < 0 with 1521 E < 1. Hence we conclude that for this typical 
acoustic streamer geometry the towed cylinder is stable for all towing speeds. 

4. The forced vibration of a towed flexible cylinder 
Let us now determine how disturbances produced by vibration of the upstream 

end of a towed neutrally buoyant cylinder propagate along it. Without loss of 
generality we will take the amplitude of the transverse vibrations of the upstream 
end to be unity, and write 

Since y(x, t )  = Re( Y(X) eiot) the boundary condition for Y ( X )  is 

y(0, t )  = coswt, (4.1) 

Y(0)  = 1. (4.2) 

The coefficient P in the solution (2.38) can be determined from the boundary 
condition (4.2) to give a form for the displacements of the cylinder: 

O0 (iQb(X,-X))"/ O0 (iQbX,)" 
Y(X) = c z 

n=O n!  ( n + b -  1) ! m-O m !  (m+b-- l ) !  ' (4.3) 

For real frequencies, Re(b) is equal to C,/C,. Equation (4.3) therefore describes 
transverse displacements and gradients of the cylinder throughout the region 
X, - X 9 e whenever the normal drag coefficient is greater than half the tangential 
drag coefficient, but it only holds in X,-X $ E when C, < &7,. 

The series in (4.3) can be readily evaluated and Y(X) is plotted in figure 4 for 
a,/l,C, = 0.033 and three values of 52. According to Taylor the ratio C,/C, lies 
between 0 and 1 ,  but we do not know its precise value. Results are therefore 
presented for two different values of C,/C, : in figure 4 ( a )  C,/C, = 0.25, while for 
figure 4 ( b )  C,/C, = 0.75. Lengths have been non-dimensionalized on the cylinder 
length 1,. Before discussing the graphs it is appropriate to investigate the low- and 
high-frequency limits analytically where simple forms for Y(X) can be derived. 
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For Q sufficiently small, it  is enough just to retain the first two terms in the series 
expansions in (4.3). Then 

Y ( X )  N 1 - iQX (for Q small), (4.4) 

i.e. disturbances propagate along the array unchanged in amplitude and with a non- 
dimensional phase speed of 1. In  dimensional terms this means that the phase speed 
of the disturbance is equal to the flow velocity U ;  the so-called ‘worm-in-a-hole’ 
motion. When viewed from a reference frame in which the distant flow field is a t  rest 
and the array has a mean speed U ,  the convection and phase speeds are equal and 
so each element of the array passes through the same physical points. This type of 
motion has been observed as low-frequency disturbances propagate along a towed 
array. 

The low-frequency asymptotic form described in (4.4) is plotted on figure 4 for 
comparison with the exact form given in (4.3). There is excellent agreement in the 
range $2 < 1 (in fact the plots for magnitude overlie). 

A simple expression for Y ( X )  can be derived for high frequencies from the 
alternative form in (2.40). After applying the boundary condition Y ( 0 )  = 1 to  
determine the constant P ,  equation (2.40) shows that (4.3) is equivalent to  

(4.5) 

For large la)(X,-X)i  and moderate Jb ) ,  i.e. for Q in the range 1 4 Q(X, -X) ,  
$2 < lACT/uA,  the large-argument asymptotic form of the Bessel function shows 
that 

+fb cos ( a ( X ,  -X)f-+bn +in) 
cos(crX!-~bn+$71) . 

If Im (a ) (X , -X) ;  is large, this expression simplifies still further to give 

(4.7) 

where the plus sign is appropriate for positive Im (a) ,  and the minus sign when Im (a )  
is negative. Equation (4.7) shows that the amplitude of a high-frequency disturbance 
decreases rapidly as X increases. The high-frequency asymptotic form described in 
(4.6) is plotted in figure 4 for 52 = 10, and agrees well with the corresponding exact 
solution given in (4.3). A comparison of figures 4 ( a )  and 4 ( b )  and the asymptotic form 
in (4.7) shows that an increase in the normal drag coefficient causes high-frequency 
disturbances to decrease more rapidly along the array. 

We have seen that the form of the forced vibration of a towed cylinder depends on 
the value of the non-dimensional frequency. At low frequencies disturbances 
propagate along the cylinder virtually unchanged in amplitude and with a phase 
speed equal to the towing speed U ;  the so-called ‘worm-in-a-hole’ motion. At higher 
frequencies the amplitude of the motion decreases as the disturbances travel 
downstream along the cylinder. 
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FIGURE 4(a). For caption see facing page. 

5. The effect of a rope drogue 
So far the downstream end of the towed cylinder has been considered to be 

unrestrained, but often there is a rope attached to it acting as a drogue. This 
arrangement is illustrated in figure 1. In  this section the effect of the drogue on the 
motion of the cylinder is investigated. Let us consider a neutrally buoyant rope 
drogue with radius aR and length 1,. We will continue to non-dimensionalize lengths 
on the length 1, of the cylinder, L = 1,. Since the rope has a free end, the theory 
developed in $2 may be used to analyse its motion provided a,, I, are replaced by 
aR, 1,. 
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FIGURE 4. Plots of the variation in the magnitude and phase of the transverse displacement with 
position X along the cylinder fox (a )  C,/C, = 0.25, ( b )  C,/C, = 0.75; aA/lACT = 0.033 and three 
values of Q. ---, low-frequency asymptotic form (equation (4.4)) ; - - - - -, high-frequency asymptotic 
form (equation (4.6)). 

The tension at  the leading edge of the rope, T,, is given by (2.6); 

TR = po xa ,  U2C, 1,. (5.1) 
This is simply a statement that the tension a t  the leading edge balances the mean 
drag on the whole rope. In  $2 the form of the solution is significantly affected by the 
existence of a ‘critical point ’, a t  which the restoring force due to tension is cancelled 
by fluid loading. There is a critical point along the rope if 

T, > po xak U 2 ,  (5 .2)  
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i.e. if C, 1, > a,. I n  practice the rope has such a small radius in comparison with its 
length that this constraint is met. Then the critical point is a t  a non-dimensional 
distance XC, downstream of the leading edge of the rope, where from (2.9) 

1,XCR = lR-aR/C,. (5 .3)  

Using the full fourth-order differential equation, including bending stiffness, in the 
region of X,, and applying the boundary condition a t  the free end will give the 
general form for transverse displacements of the rope. These are described by (2.37) 
with a,, 1, replaced by aR, I, and with L = I,. In  particular the displacement YR and 
its gradient dY,/dX a t  the leading edge of the rope are given by 

sin OER 
sin (O,, - ~ b , )  

Y R = R  C (iQbRXCdn +H(0.5-Re ( b H ) )  R 
lz=o n !  (n+b,-l)! 

(iQb,X,R)n 
X bH(-bR)! QZEgbRXkzR (5.4) 

(b,+ I)! ,=,n!(n+l-b,)!' 
and 

sin OER m 

-=-RiQb, d YR C (iQbRXCR)" -H(0.5- Re (b,)) R . 
dx 12=o n!  ( n + b R ) !  sin (BER - nbR) 

(iQb,X,,)" 
X bR( -bR) ! 522,731+bRx-b R CRR C . (5.5) 

(bR+ I ) !  "=o n!  (n-b,) ! 
In  this expression 

and X,, is defined in (5 .3 ) .  For practical drogues X,, is large in comparison with 
E,, which is just saying that the critical point on the rope drogue is much closer to 
its downstream end than to its upstream end. Then the contributions to YR and 
dY,/dX from the second series in (5.4) and (5.5) are negligible in comparison with 
that from the first. The constant R is to be determined from boundary conditions a t  
the upstream end of the rope where it joins the cylinder containing the sonar 
array. 

The displacements of the cylinder and rope drogue must be equal a t  their junction. 
Also if the join is so short that  i t  has negligible momentum, the forces acting on it 
must balance. Since the viscous forces acting on a short length are negligible, the 
balance of the mean longitudinal force reduces to a statement, that  the tension a t  the 
downstream end of the cylinder equals that a t  the leading edge of the rope. Hence 
it follows from (5.1) that 

T(1, ) = TR = Po XuR uzCT 1,. (5.9) 

Substituting this value of T(2,) into (2.6) gives the tension a t  a distance x along the 
cylinder ; 

T ( x )  = po xU2C, (aR 1, + aA I, - a, x). (5.10) 

An effective drogue is sufficiently long to ensure that 

LaxLC, > 4, (5.11) 
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so that there is no critical point along the cylinder. Both independent solutions for 
the transverse motion described in (2.15) and all their derivatives are therefore finite 
all along the cylinder. When a drogue is long enough to meet the constraint (5.11), 
the tension it produces in the cylinder is sufficient to eliminate the strong gradients 
in pvsitivn that can occur near the free end of an unconstrained cylinder. From 
(2.15) 

for 0 d X < 1.  It follows from (2.13) that 

C, 2iQa, 
b --++, 

lAC,  

and substitution for T(1,) from (5.9) into (2.9) shows that 

(5.13) 

The inequality (5.11) ensures that X,, is greater than unity. The constants P and 
Q are to be determined from boundary conditions a t  the two ends of the cylinder 
X = O a n d  1.  

Displacements are continuous at  the junction of the towed cylinder and the rope 
i.e. 

Y(1) = YE, (5.14) 

where Y ( 1 )  and YE are given by (5.12) and (5.4) respectively. 
The second boundary condition a t  X = 1 is that there be no net transverse force 

acting on the junction of the cylinder and the rope. The only significant forces acting 
on this joint are those due to the tension in the cylinder and the rope and the virtual 
mass of the fluid. This virtual-mass term was discussed in the derivation of the free- 
end boundary condition (2 .27 ) .  The effects of bending stiffness of the cylinder 
and any viscous drag on the junction are negligible. The boundary condition is 
therefore 

(5.15) 

where yA denotes the displacement a t  the trailing edge of the towed cylinder and 
yH. a t  the leading edge of the rope. The constants f A  and fR are introduced to account 
for the three-dimensionality of the flow around the end of the cylinder and rope 
respectively. The boundary condition (5.15) is similar to that used a t  the junction of 
a rope and a cylinder by Hawthorne (1961) and PaYdoussis (1968, equation (8)), but 
they consider a cylinder with considerable bending stiffness and neglect a term due 
to the tension in the cylinder in their boundary condition. When (5.15) is expressed 
in terms of non-dimensional variables, for a disturbance with time dependence eiot, 
it reduces to 

Y'(1) -___ a ' f ~  (iQY(1)+ ~ ' ( 1 ) )  = Yk----(iQYR+ % f R  Yk). (5.16) 

The dash denotes a derivative and Y'(1) can be obtained by differentiating (5.12) 
term by term. Yk is defined in (5.5). 

aR 'E 'T 4 2  CT 
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In  $3  we found a towed cylinder with a free end to  be stable t o  small transverse 
displacements. The effect of a rope drogue on the stability can now be investigated. 
The eigenfrequencies are values of Sz for which Y(0)  = 0, where Y(0)  is given in (5.12) 
and P and Q are determined by the boundary conditions (5.14) and (5.16). If there 
is an eigenfrequency with negative imaginary part, the eigenmode will grow in time 
and the cylinder and drogue will be unstable. The stability of a cylinder with a 
drogue has been investigated numerically for aA/IACT = 0.033, 1 J l A  = 0.15, aR/lA = 
2.4 x lop5, C ,  = 2.5 x with fA = fE = 1 and two values of C,; C - 0.25C, and -. 
C, = O.75CT. The contours Re Y(0)  = 0 and I m  Y ( 0 )  = 0 were plotted m the lower 
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FIGURE 5 .  Plots of the variation in the magnitude and phase of the transverse displacement with 
position X along the cylinder for (a)  C,/C, = 0.25, ( b )  C,/C, = 0.75; a,/l,C, = 0.033, 1 J l A  = 0.15. 
aJZA = 2.4 x with fA =fR = 1 and different values of 8. ---, Magnitude and 
phase of displacements along a longer cylinder of length 1, + I ,  a,/aA. 

C, = 2.5 x 

half Q-plane. They were found not to intersect, thereby demonstrating that there are 
no eigenfrequencies with negative imaginary part. Hence a towed cylinder is not 
destabilized by the addition of a drogue. 

Since the acoustic streamer is stable to  towing, i t  is appropriate to investigate the 
effect of a drogue on its forced response a t  frequency w .  Taking the amplitude at  the 
upstream edge of the towed cylinder to be unity gives y(0, t )  = cos wt or equivalently 

Y(0)  = 1 .  (5.17) 
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The coefficients P, Q and R can be determined from the three boundary conditions 
(5.14), (5.16) and (5.17). Once P and Q are known the propagation of disturbances 
along the cylinder is described by (5.12). This solution is plotted in figure 5 for 
different frequencies and a cylinder/drogue geometry characterized by u,/Z, C ,  = 

values of C ,  ; C, = 0.25GT and C ,  = O.75CT. 
When Q(X,,- 1)  is small the effect of the drogue can be investigated analytically. 

This condition ensures that only the first terms in the series expansions in (5.12) for 
Y(l)  need be retained. Its derivative can be simplified in a similar way. When this 
approximation is made the boundary conditions (5.14) and (5.16) reduce to a 
statement that Q is of order PQ(X,, - l ) b ~ .  Whenever (Q(X,, - l ) ) b ~  is sufficiently 
small, the contribution to Y ( X )  from the second series in (5.12) is negligible in 
comparison with that from the first i.e. 

0.033, ZR/lA = 0.15, UR/ZA = 2.4 X w5, CT = 2.5 X lop3 with f A  =fa = 1 and t W 0  

(iQb,(X,, - x ) ) n  

n!(n+b, - l ) !  ' 
Y ( X )  NN P c (5.18) 

for (sZ(X,,- l ) ) b ~  4 1. P can then be determined from the boundary condition (5.17) 
at the upstream end of the cylinder to give 

Y ( X )  = I; (5.19) 

for (sZ(X,,- l ) ) b ~  + 1. Equation (5.19) is identical in form to (2.38) which describes 
the motion of a cylinder with a free end. The only difference between these two 
equations is that X, = l-uA/ZACT in (2.38) has been increased to X,, in (5.19). 
From (5.13) 

x,, = 1 +---, 
a A  1, CT 1, 

or in dimensional terms, the critical point is a t  ZA+l~aR/aA-aA/CT for a towed 
cylinder with a drogue rather than at lA-aA/CT. A comparison of these two forms 
shows that, as far as deflections of most of the cylinder is concerned, a rope drogue 
has the same effect of increasing the cylinder length by an amount lRaR/aA, provided 
(Q(X,,- l ) ) b ~  + 1. The propagation of disturbances along a cylinder of length 
lA+lRa,/aA are shown in figure 5 for comparison with the cylinder/drogue results. 
There is good agreement between the two, confirming the analytical prediction. 
Kennedy & Strahan (1981) stated that a drogue may have this effect. The constraint 
that (Q(X,,-  l ) ) b ~  be small is met provided sZIR ux/ZA aA is much less than unity. In  
dimensional variables this is equivalent to wl, aR/Uu, + 1.  

When (Q(X,,- l ) ) b ~  is not particularly small, the situation is more complicated 
and Q may be appreciable. This occurs at high frequencies if Re (b,) = C,/C, is 
small. Then the deflection of the cylinder is made up of a superposition of the two 
linearly independent solutions : 

with 

and 

(5.20) 



Dynamics of towed ,flexible cylinders. Part 1 

l ~ . t ~ l * ~ n ~ l * , ~ * ~ ~ t ~ ~  
3.0 - - 

2.0 - 

I " " I " " I " " 1 " "  
0 0.2 0.4 0.6 0.8 1 .o 

X 

527 

FIGURE 6. Plots of the variation in the magnitude of the transverse displacement with position X 
along the cylinder for Q = 10, C,/C, = 0.25, a,/l,C, = 0.033, lR/lA = 0.15, a,/l, = 2.4 x W5, 
C, = 2 . 5 ~  withf, = fB = 1.  ---, lPYl(X)l; -----,  IQl'&X)l. 

An example of this type of behaviour is illustrated in figure 6. A comparison of figures 
4 ( a )  and 6 shows that in this case the addition of a drogue has had an adverse effect. 
High-frequency disturbances forced by vibration of the upstream end of the cylinder, 
decay more slowly with distance along the cylinder with a drogue. The addition of 
a drogue has admitted a dependence on Y,(X) ,  which decreases less rapidly than 
Y l ( X )  as X increases. 

6.  Conclusions 
The propagation of linear transverse displacements along a neutrally buoyant 

towed cylinder has been investigated. The form of the deflection is dominated by the 
existence of a critical point a t  which the effect of tension in the cylinder is cancelled 
by a fluid-loading term. Matched asymptotic expansions have been used to extend 
the solution across the critical point and apply the downstream boundary conditions. 
Displacements well upstream of the critical point are found to have a simple form, 
while nearer to the critical point the solution depends on whether the normal drag 
coefficient C, is greater or less than half C,. 

A typical acoustic streamer geometry has been found to be stable to transverse 
displacements a t  all towing speeds. The forced response of the streamer has been 
investigated so that, in particular, if the time history of the upstream end were 
known the transverse displacements of the towed cylinder containing a sonar array 
could be predicted. The motion a t  a general frequency can be found by summing a 
series numerically, but for low and high frequencies it has simple analytical forms. 
Low-frequency disturbances for which o l J U  6 1 propagate down the array 
unchanged in amplitude and with a phase speed U .  This is the so-called 'worm-in-a- 
hole ' motion. Higher-frequency disturbances are more effectively attenuated. 

The effect of a rope drogue has been investigated. Provided wl,a,/Ua, is small 
in comparison with unity the addition of a drogue has the same effect as increasing 
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the length of the towed cylinder by lRaR/aA. At higher frequencies and for small 
values of the ratio C,/C, attaching a drogue may have an adverse effect, by reducing 
the attenuation of high- frequency disturbances as they propagate down the cylinder. 

I would likc to thank Professor J. E. Ffowcs Williams for his illuminating 
comments during the course of this work. The work has been carried out with the 
support of Topexpress Ltd and the Procurement Executive, Ministry of Defence. 

Appendix. Asymptotic forms for the inner solution @,(R) 
The leading term in the inner expansion is to satisfy (2.19): 

d4@ d2@ d@ 
dR4 dR2 dR O - R O -  b L =  0, 

a third-order differential equation in d@,/dR. This may be solved by investigating 
solutions of the form 

= JOm f ( s )  esaR ds, 

where f ( s )  and a are yet to be determined 
Differentiation shows that 

Similarly 

R d2QS, = 1: Rsaf(s) eSuRds, 
dR2 

which after integration by parts becomes 

provided sf(s)eSaR tends to zero as s tends both to  zero and to infinity. The differential 
equation (A 1 )  may therefore be rewritten as 

jI [ (s3a3 - b ) f ( s )  + sf(s) esaR ds = 0 for all R. " (  11 
This is automatically satisfied if the integrand vanishes for all positive s, i.e. whenf(s) 

This first-order differential equation for f may be readily integrated to show that, 
apart from an arbitrary multiplicative constant, 

(A 7) 
f@) = e-;s3a3 $-l 

For 0 < Re(b) the condition sf(s)+O as s + O  is met. Finally a is to be chosen to 
ensure that sf(s) esaR --f 0 as s+co. An inspection of (A 7) shows that a3 = 1 will do, i.e. 

a =  1 1 2  '(-1+i2/3) or$(-l--iy/3). (A 8) 
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Substitution for f(s) and a from (A 7 )  and (A 8) into (A 2) gives three possible 
solutions of the inner differential equation (A 1) : 

%=I,(R) dR = 1: sb-1exp[-$3+i(-1+iz/3)sR]ds, (A 9b) 

sb-l exp [-is3 +t( - 1 - i d 3 )  sR] ds. 
dR 

The asymptotic forms of the integrals 11, I ,  and I ,  for large IRI will now be evaluated. 
These are needed to match Q0(R) to the outer solution, but will also show that the 
three solutions in (A 9) are linearly independent. 

I,@) is given by 

I l (R)  = s ~ - ~  exp [ --is3 + sR] ds. (A 10) 
/om 

When R is large and negative, the argument of the exponential is negative 
throughout the range of integration and the main contribution to the integral comes 
from near s = 0. I ,  may be evaluated by Watson’s lemma to give 

I,@) z (-R)-b(b-1)![l+O(R-3)] asR+-co. (A 11) 

For R large and positive it is appropriate to  introduce a new integration variable 
p = 8R-i 

I,(R) = ~ i b  [om pb-lexp [ & ( - ~ 3 + ~ ) l d p .  

s,F d P )  exp [&WP)I d p ,  

(A 12) 

The integral now has the form 

with h(p) = p--&’, and for large Ri is suitable for evaluation by Laplace’s method. 
It is determined mainly by the region where h(p) is maximum. The maximum of h(p)  
is at  p = 1 and h”(1) = -2. Laplace’s method therefore gives 

Il(R) z d&b-iexp[$R%] as R++co.  (A 13) 

The integral I ,  describing the second independent solution can be treated in a 
similar way 

I,(R) = ~ ~ - ~ e x p [ - + s ~ + ~ ( - l + i ~ 3 ) s R ] d s .  (A 14) 1: 
When R tends to minus infinity, we introduce a new variable p = s(-R)-i. In 

terms of p 

I,(R) = ( - R)ib pb-l exp [( - R): ( -;p3 + e-iinp)] dp. (A 15) 1: 
The inte ral is again in the form fg(p)  exp [( -R)$h@)]dp, where now h(p) = 

-+p3+e-zinp. h(p) has a stationary point a t  p = e-iin. r,, the path of steepest 
descents through this point is sketched in figure 7 .  As R-t-  co 

5 

pb-l exp [( - R)dh(p)] d p + d (  -R)-iexp [ -ii( - R)f-in:(ib-i)]. (A 16) 
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I Re a 

FIGURE 7 .  The path of steepest descents for the integral in (A 15). 

We see from figure 7 that 

lom pb-l exp [( - R)f h(p)] dp = 1 

s, 

pb-1  exp [( - R); dp, (A 17) 
rl+r2 

where r, is the straight line arg (p) = -in. h(p)  is real on r, and becomes increasingly 
negative as p increases in magnitude along it. Therefore, for large negative R, the 
integral along r, may be evaluated by Watson's lemma to give 

pb-l exp [( - R): h@)] dp + ( - R)-fb ( b  - 1) ! as R -f - rn . (A 18) 

It then follows from a combination of equations (A 15)-(A 18) that 

I,(&) n$( - ~ ) t b - f  e-i&4) exp [ - iQ( - ~ ) i ]  + ( - ~ ) - b  e-in% (b  - 1)  ! as R + - rn. 
(A 19) 

When R is large and positive the end-point of integration leads to a larger term 
than the stationary point. To see this explicitly we make the substitution p = 8R-t 
to obtain 

I , ( @  = Jam pb-l exp [ -R% + e-ii"p)] dp. (A 20) 

The argument of the exponential is stationary a t  p = din, but the integrand is equal 
to e+r(b-l) exp [ -$I there, and is exponentially small for large R. The integral along 
the real axis can again be expressed as the sum of two integrals, one along the 
steepest descents curve and the second along a straight line. An appropriate choice 
of straight line is y = teiin, with t real 0 < t < 1 .  The exponential decreases from zero 
at t = 0 along this line, and so for large R the main contribution to the integral comes 
from near the origin where it can be evaluated by Watson's lemma. This leads to  a 
larger term than the integral along the steepest descents curve through the 
stationary point and shows that 

I,(R) z R-beiinb(b-1)![1+O(R-3)] as R + w .  (A 21) 

The asymptotic forms of I,(R) may be evaluated by a similar method or, more 
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simply. by noting from (A 9) that the only difference between I ,(R) and I,(R) is in 
the sign of i .  The complex conjugate of I ,(R) shows 

I,(R) = R-* e-iinb ( b  - 1) ! [ 1 +  o ( R - ~  11 as R +a, 

-- R):] + ( - ~ 1 - b  & ~ 2 *  ( b  - 1 )  ! 

(A 22)  
and 

1 , ( ~ )  & ( - ~ 1 b b - g  e i n ( i b - 3  cxp as R + - 3 

(A 23) 

The general solution for d@,,/dR may be expressed as a linear combination of the 
independent solutions l l ( R ) ,  12(R) and I,@) ; 

-- d@n - Al,(R)+BI,(R)+CI,(R), 
dR 

where A ,  B and C arc arbitrary constants. Integration of the asymptotic forms for 
l l ( R ) ,  I,(R) and I,(R) given in equations (A 13), (A 21) and (A 22) shows that for 
large positive R 

(A 25)  @,(n) x A Rib-$ exp [@] - Rl-b (6 - 2) ! ( B  &b + C e - f i n b  ) + &!, 

where D is a constant arising from the integration. Similarly for large negative R the 
asymptotic forms in equations (A l l) ,  (A 19) and (A 23) give 

@,(R) x A ( - R)l-b ( b  - 2 )  ! + ( - I 2 ) l - b  (b  - 2 )  ! ( B  e- f inzb  + c efin2b 1 
+ ( - R)fb-: ( B  e-ik + C e i i )  + D, (A 26) 

with @ = 7~ (ib + t )  + +( - R);. 
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